Simulation of space charge transport in solid dielectric materials using transmission lines modeling method

Author:

Shamsi Amin1,Ganjovi Alireza2ORCID,Akmal Amirabbas Shayegani1

Affiliation:

1. School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran

2. Laser Research Department, Photonics Research Institute, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran

Abstract

In this paper, a lumped RC circuit model, which is based on the Transmission Line Modeling (TLM) method, is used to describe the space charge production and displacement mechanisms in three different solid dielectric materials (LDPE, PTFE and FR4). Each dielectric material is considered as a transmission line with the capacitive and resistance elements. The obtained circuit equations are solved along with the continuity equations for the various charged species in the bulk of solid dielectric material. The electric potential and field, density of different charged species and their recombination rates, resistive and capacitive properties of the solid dielectric material are calculated. In addition, the effects of the variations in the applied voltage, dielectric permittivity and temperature on these physical parameters are examined. Besides, compared with LDPE and PTFE, the net charge density increment rate in FR4 is much higher. Moreover, the influences of temperature on the net charge density in LDPE are not significant. Furthermore, at the higher applied voltages, the current density is increased. Interestingly, the effects of temperature variations on the recombination rates, net charge and current density in LDPE are much lower. Hence, the suitability of LDPE as solid dielectric material is proved.

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Ceramics and Composites,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3