Parameter of dielectric loss distribution in the new model for complex conductivity based on Havriliak–Negami formula

Author:

Yurasov Yu. I.12ORCID,Nazarenko A. V.1

Affiliation:

1. Federal Research Centre, The Southern Scientific, Centre of the Russian Academy of Sciences, Chekhov av., Rostov-on-Don, Russian Federation

2. Research Institute of Physics of Southern Federal University, Rostov-on-Don, Russian Federation

Abstract

This paper is focused on the comparison of the results of various approximation models describing the frequency dependences of the dielectric constant [Formula: see text] and [Formula: see text], the tangent of the loss angle tg[Formula: see text] and the electrical conductivity [Formula: see text] and [Formula: see text] of nonlinear dielectrics. The classic ferroelectric material of the PZT system with [Formula: see text] was chosen as the object of study. Based on the analysis of temperature-frequency dependences of the “empirical” parameters [Formula: see text] and [Formula: see text], a regularity has been revealed that allows them to be calculated. A new relationship has been established through the parameter [Formula: see text], which allows to relate the temperature and frequency dependences of the complex electrical conductivity as [Formula: see text] and as [Formula: see text] in the Havriliak–Negami approximation models and in the new model for the description of the complex electrical conductivity [Formula: see text]. It is shown that [Formula: see text] is a parameter of the temperature-frequency distribution of dielectric losses. Using the obtained expressions, a new theoretical description of experimental spectra having a relaxation character was proposed. It has been proven that the use of the new model makes it possible to accurately describe the set of studied spectra, including the high and low frequencies, in the frequency range from [Formula: see text] to 108[Formula: see text]Hz.

Funder

the project of the SSC RAS State Order

Southern Scientific Centre of RAS

RFBR

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Ceramics and Composites,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3