HIGH DIELECTRIC CONSTANT COMPOSITE BASED ON CHLOROPHYLL A ENTRAPPED NANOPOROUS SILICA GEL

Author:

MANNA J. S.1,MITRA M. K.1,MUKHERJEE S.1,DAS G. C.1

Affiliation:

1. Department of Metallurgical and Material Engineering, School of Material Science and Nanotechnology, Jadavpur University, Kolkata 700032, India

Abstract

Chlorophyll a (naturally occurring Mg porphyrene) has been entrapped in nano/porous silica gel using sol–gel method at room temperature, producing a stable composite. HRTEM observation reveals regular nanoscale [around 15–20 nm diameter] distribution of aggregated polycrystalline chlorophyll a within porous silica matrix. UV-vis study also corroborates the presence of various aggregated chlorophyll a species within the system. Low field measurement shows almost 400 times enhancement of dielectric constant (1700) with incorporation of only 0.125 mg/ml of chlorophyll and the loss is 0.5 at room temperature at 100 Hz. The dielectric constant of the composite reaches 2500 as chlorophyll concentration becomes 1 mg/ml. Observed strong space charge response to the external field and strong frequency dispersion of the dielectric properties of the composite can be attributed to the long-range electron delocalization [nomadic polarization] in chlorophyll a aggregates. The electric modulus (M*) formalism used in this study enabled us to distinguish and separate various relaxation processes. It is found that with increasing chlorophyll concentration D.C. relaxation time decreases exponentially at room temperature. It is shown that observed relaxations do not perfectly follow the Debye response in high frequency region due to heterogeneous distribution of chlorophyll aggregates. The low values of room temperature activation energy calculated from Arrhenius plot reveal that polaronic hopping phenomena is absent at grain-interfacial region due to low thermal energy.

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Ceramics and Composites,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3