Affiliation:
1. Merrill Lynch International, 25 Ropemaker Street, London EC2Y 9LY, UK
2. Department of Mathematics, King's College London, The Strand, London WC2R 2LS, UK
Abstract
New interest rate models have emerged recently in which distributional assumptions are made directly on financial observables. In these "Market Models" the Libor rates have a log-normal distribution in the corresponding forward measure, and caps are priced according to the Black–Scholes formula. These models present two disadvantages. First, Libor rates do not in reality have a log-normal distribution since the implied volatility of a cap depends typically on the strike. Second, these models are difficult to use for pricing derivatives other than caps. In this paper, we extend these models to allow for a broader class of Libor rate distributions. In particular, we construct multi-factor Market Models that are consistent with an initial cap smile surface, and have the useful feature of exhibiting Markovian Libor rates. We show that these Markov Market Models can be used relatively easily to price complex Libor derivatives, such as Bermudan swaptions, captions or flexi-caps, by construction of a tree of Libor rates.
Publisher
World Scientific Pub Co Pte Lt
Subject
General Economics, Econometrics and Finance,Finance
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献