AN ENHANCED GENETIC ALGORITHM FOR SOLVING THE HIGH-LEVEL SYNTHESIS PROBLEMS OF SCHEDULING, ALLOCATION, AND BINDING

Author:

GREWAL GARY WILLIAM1,WILSON THOMAS CHARLES1

Affiliation:

1. Department of Computing and Information Science, University of Guelph, Guelph, Ontario, Canada

Abstract

This paper presents a novel approach to the concurrent solution of three High-Level Synthesis (HLS) problems that are modeled as a Constraint-Satisfaction Problem (CSP) and solved using an Enhanced Genetic Algorithm (EGA). We focus on the core problems of high-level synthesis: Scheduling, Allocation, and Binding. Scheduling consists of assigning of operations in a Data-Flow Graph (DFG) to control steps or clock cycles. Allocation selects specific numbers and types of functional units from a hardware library to perform the operations specified in the DFG. Binding assigns constituent operations of the DFG to specific unit instances. A very general version of this problem is considered where functional units may perform different operations in different numbers of control steps. The EGA is designed to solve CSPs quickly and does not require a user to specify appropriate mutation and crossover rates a priori; these are determined automatically during the course of the genetic search. The enhancements include a directed mutation operator and a new type of elitism that avoids premature convergence. The HLS problems are solved by applying two EGAs in a hierarchical manner. The first performs allocation, while the second performs scheduling and binding and serves as the fitness function for the second. When compared to other, well-known techniques, our results show a reduction in time to obtain optimal solutions for standard benchmarks.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science Applications,Theoretical Computer Science,Software

Reference7 articles.

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An efficient CAD tool for High-Level Synthesis of VLSI digital transformers;Signal and Data Processing;2021-12-01

2. Co-synthesis of contention-free energy-efficient NOC-based real time embedded systems;Journal of Systems Architecture;2019-09

3. Hardware/Software Co-synthesis of Distributed Embedded Systems Using Genetic Programming;Evolvable Systems: From Biology to Hardware;2008

4. An Improved Concurrent Operation Scheduling and Unit Allocation Algorithm Based on Evolutionary Technique;2007 International Conference on Wireless Communications, Networking and Mobile Computing;2007-09

5. Medium Access Control for Body Sensor Networks;2007 16th International Conference on Computer Communications and Networks;2007-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3