A Comprehensive Comparison on Evolutionary Feature Selection Approaches to Classification

Author:

Xue Bing1,Zhang Mengjie1,Browne Will N.1

Affiliation:

1. School of Engineering and Computer Science, Victoria University of Wellington, P.O. Box 600, Wellington 6140, New Zealand

Abstract

Feature selection is an important data preprocessing step in machine learning and data mining, such as classification tasks. Research on feature selection has been extensively conducted for more than 50 years and different types of approaches have been proposed, which include wrapper approaches or filter approaches, and single objective approaches or multi-objective approaches. However, the advantages and disadvantages of such approaches have not been thoroughly investigated. This paper provides a comprehensive study on comparing different types of feature selection approaches, specifically including comparisons on the classification performance and computational time of wrappers and filters, generality of wrapper approaches, and comparisons on single objective and multi-objective approaches. Particle swarm optimization (PSO)-based approaches, which include different types of methods, are used as typical examples to conduct this research. A total of 10 different feature selection methods and over 7000 experiments are involved. The results show that filters are usually faster than wrappers, but wrappers using a simple classification algorithm can be faster than filters. Wrappers often achieve better classification performance than filters. Feature subsets obtained from wrappers can be general to other classification algorithms. Meanwhile, multi-objective approaches are generally better choices than single objective algorithms. The findings are not only useful for researchers to develop new approaches to addressing new challenges in feature selection, but also useful for real-world decision makers to choose a specific feature selection method according to their own requirements.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science Applications,Theoretical Computer Science,Software

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3