FUZZY BRIDGED REFINEMENT DOMAIN ADAPTATION: LONG-TERM BANK FAILURE PREDICTION

Author:

BEHBOOD VAHID1,LU JIE1,ZHANG GUANGQUAN1

Affiliation:

1. Decision Systems & E-Service Intelligence Research Laboratory, Centre for Quantum Computation & Intelligent Systems, School of Software, Faculty of Engineering and Information Technology, University of Technology Sydney, P.O. Box 123, Broadway, Sydney, NSW 2007, Australia

Abstract

Machine learning methods, such as neural network (NN) and support vector machine, assume that the training data and the test data are drawn from the same distribution. This assumption may not be satisfied in many real world applications, like long-term financial failure prediction, because the training and test data may each come from different time periods or domains. This paper proposes a novel algorithm known as fuzzy bridged refinement-based domain adaptation to solve the problem of long-term prediction. The algorithm utilizes the fuzzy system and similarity concepts to modify the target instances' labels which were initially predicted by a shift-unaware prediction model. The experiments are performed using three shift-unaware prediction models based on nine different settings including two main situations: (1) there is no labeled instance in the target domain; (2) there are a few labeled instances in the target domain. In these experiments bank failure financial data is used to validate the algorithm. The results demonstrate a significant improvement in the predictive accuracy, particularly in the second situation identified above.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science Applications,Theoretical Computer Science,Software

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. CO2 emission based GDP prediction using intuitionistic fuzzy transfer learning;Ecological Informatics;2023-11

2. A Survey of Vision-Based Transfer Learning in Human Activity Recognition;Electronics;2021-10-02

3. Second order Takagi-Sugeno fuzzy model with domain adaptation for nonlinear regression;Information Sciences;2021-09

4. Fuzzy Multiple-Source Transfer Learning;IEEE Transactions on Fuzzy Systems;2020-12

5. Machine Learning;A Matrix Algebra Approach to Artificial Intelligence;2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3