Affiliation:
1. China Southern Power Grid EHV Transmission, Company Maintenance Test Center, Guangzhou, Guangdong 510663, P. R. China
Abstract
With the continuous improvement of science and technology, the substation remote control system has been constantly improved, which provides the possibility for the complete realization of intelligent and unmanned substation. However, due to the special substation environment, it is easy to cause interference, coupled with the low accuracy of today’s video image processing algorithm, which leads to the frequent occurrence of false alarms and missing alarms. Manual intervention is needed to deal with this, which inhibits the display of automatic intelligent substation processing functions. Therefore, in this paper, the most rapidly developed machine learning algorithm — deep learning is applied to the substation instrument equipment identification processing, in order to improve the accuracy and efficiency of instrument equipment identification, and make due contributions to the full realization of unattended substation.
Publisher
World Scientific Pub Co Pte Ltd
Subject
Computer Science Applications,Theoretical Computer Science,Software
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献