Affiliation:
1. Physics Department, Faculty of Sciences, Beni-Suef University, Egypt
Abstract
In this paper, we demonstrate theoretically an efficient way to improve the optical properties of the PIN silicon solar cell. We design an anti-reflecting coating (ARC) from one-dimensional ternary photonic crystals (PCs). Also, we design a back-reflector that composed of one-dimensional binary PC. By adding ARC layers, we have observed that the absorption is increased from 0.5 to 0.75. Moreover, by adding back reflector layers, we found that the absorption values rise to reach over 0.95 in the range of the photonic band gap (PBG) of the back reflector. Thus, using PCs in each ARC and back reflector has a significant enhancement of the absorption of the cell. Our design could have a distinct effect on the conversion efficiency of the cell. We use transfer matrix method to optimize the PBG of the back reflector. Finally, the numerical and simulated results of the cell are investigated by COMSOL Multiphysics that based on the finite element method (FEM).
Publisher
World Scientific Pub Co Pte Lt
Subject
Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献