SUPERCELL RHEED CALCULATIONS

Author:

MAKSYM P. A.1

Affiliation:

1. Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH, UK

Abstract

Efficient calculational techniques for reflection high energy electron diffraction (RHEED) are reported for surfaces with large periodic supercells. A fast Fourier transform approach enables the computer time scaling of a conventional RHEED calculation to be reduced to n2 log (n), where n is the number of diffracted beams used in the calculation. The special technique needed to implement this for arbitrary incident azimuths with symmetry optimization is detailed. A Green's function method is also introduced which is particularly suitable for calculations for imperfect surfaces. This combines the conventional approach to RHEED for dealing with substrate diffraction with a Green's function treatment for an imperfect surface of supercells and has n log (n) time scaling. Techniques for matching the results of the conventional and Green's function treatments at the substrate–surface interface are given. In addition, numerical procedures for solving the resulting equations are described and a selection of illustrative results is presented.

Publisher

World Scientific Pub Co Pte Lt

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3