Affiliation:
1. School of Electrical and Electronic Engineering, Block S1, Nanyang Technological University, Singapore 639798, Singapore
Abstract
This brief review focuses on the nature, kinetics, dynamics and consequences of the sp-orbital hybrid bonding of C, N and O to the Ni/Rh(001) surfaces which give rise to the same kind of "radial and then the p4g clock" reconstruction. It is identified that the "radial" and the subsequent "clock" reconstruction result from the adsorbate–substrate bond formation with sp-orbital hybridization, and that the driving force behind the reconstruction originates from the electrostatic interaction along the <11> direction. At the initial stage, A-1 (A=C, N or O adsorbate) sinks into the fourfold hollow site and forms one bond with a B (B = Ni or Rh host atom) underneath, giving rise to an AB5 cluster with four dipoles at the surface. As A-1 evolves into the hybridized-A-n (n=4, 3, 2), the AB5 cluster evolves into an AB4 tetrahedron. Meanwhile, the AB4 tetrahedron redefines three of the four surface dipoles as B+, B2+, B+/ dipole or Bdipole, depending on the valence value of the adsorbate. The electrostatic force arises upon repopulating the valence electrons, which creates rhombus strings along the <11> direction. With the presence of nonbonding lone pairs, the clock rotation on Ni(00l)-(2×2)p4g-2N-3 and Rh(00l)-(2×2)p4g-2O-2 surfaces is initiated by the alternate attraction and repulsion in the <11> direction and the rotation is stabilized by bond tension; whereas the clock rotation on the Ni(00l)-(2×2)p4g-2C-4 surface is driven by the nonequivalent electrostatic repulsion in the <11> direction and the rotation is balanced by strong bond compression. The findings so far have led to technical innovation for the adhesion between diamond and metals by designing a gradient TiCN transition layer to neutralize the bond stress.
Publisher
World Scientific Pub Co Pte Lt
Subject
Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Perspectives;Electron and Phonon Spectrometrics;2020
2. Introduction;Electron and Phonon Spectrometrics;2020
3. Coordination-Resolved Electron Spectrometrics;Chemical Reviews;2015-06-25
4. Design Materials and Processes;Springer Series in Chemical Physics;2014
5. STM and LEED: Atomic Valences and Bond Geometry;Springer Series in Chemical Physics;2014