THE EFFECT OF NITROGEN GAS FLOW RATE ON THE PROPERTIES OF TiN-COATED HIGH-SPEED STEEL (HSS) USING CATHODIC ARC EVAPORATION PHYSICAL VAPOR DEPOSITION (PVD) TECHNIQUE

Author:

MUBARAK ALI1,HAMZAH ESAH BINTI1,MOHD TOFF MOHD RADZI HJ.2,HASHIM ABDUL HAKIM BIN2

Affiliation:

1. Department of Materials Engineering, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia

2. Coating Materials Programme, Advanced Materials Research Center (AMREC), SIRIM Berhad, Lot 34, Jalan Hi-Tech 2/3, Kulim Hi-Tech Park, 09000 Kulim, Kedah, Malaysia

Abstract

Cathodic arc evaporation (CAE) is a widely-used technique for generating highly ionized plasma from which hard and wear resistant physical vapor deposition (PVD) coatings can be deposited. A major drawback of this technique is the emission of micrometer-sized droplets of cathode material from the arc spot, which are commonly referred to as "macroparticles." In present study, titanium nitride ( TiN ) coatings on high-speed steel (HSS) coupons were produced with a cathodic arc evaporation technique. We studied and discussed the effect of various nitrogen gas flow rates on microstructural and mechanical properties of TiN -coated HSS coupons. The coating properties investigated in this work included the surface morphology, thickness of deposited coating, adhesion between the coating and substrate, coating composition, coating crystallography, hardness and surface characterization using a field emission scanning electron microscope (FE-SEM) with energy dispersive X-ray (EDX), X-ray diffraction (XRD) with glazing incidence angle (GIA) technique, scratch tester, hardness testing machine, surface roughness tester, and atomic force microscope (AFM). An increase in the nitrogen gas flow rate showed decrease in the formation of macro-droplets in CAE PVD technique. During XRD-GIA studies, it was observed that by increasing the nitrogen gas flow rate, the main peak [1,1,1] shifted toward the lower angular position. Surface roughness decreased with an increase in nitrogen gas flow rate but was higher than the uncoated polished sample. Microhardness of TiN -coated HSS coupons showed more than two times increase in hardness than the uncoated one. Scratch tester results showed good adhesion between the coating material and substrate. Considerable improvement in the properties of TiN -deposited thin films was achieved by the strict control of all operational steps.

Publisher

World Scientific Pub Co Pte Lt

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3