THE NET ADSORPTION OF HYDROGEN ON PALLADIUM NANOPARTICLES

Author:

SAHU DEBJYOTI1,MISHRA PRASHANT2,DAS NITUN2,VERMA ANIL12,GUMMA SASIDHAR12

Affiliation:

1. Centre for Energy, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India

2. Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India

Abstract

In this paper, we report the synthesis of polymer coated palladium ( Pd ) nanoparticles through a single stage reduction of Pd 2+ ions by ethylene glycol. Polyvinyl pyrrolidone (PVP, MW 25,000) is used as a stabilizer. Self-assembled Pd nanoparticles (10–40 nm) were used in hydrogen adsorption studies. Gravimetric adsorption measurements were carried out in a pressure range of 0–26 bar at 293, 324, 364 and 392 K. Saturation for all isotherms was obtained within a few bars of pressure at all temperatures. Maximum hydrogen storage capacity observed was 0.58 wt.% at 324 K and 20 bar. Net adsorption calculations indicated that required tank volume (for storing a particular amount of hydrogen) can be significantly reduced by using a tank filled with Pd nanoparticle.

Publisher

World Scientific Pub Co Pte Lt

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3