GENETIC ALGORITHM-ASSISTED ARTIFICIAL NEURAL NETWORK FOR THE ESTIMATION OF DRILLING PARAMETERS OF MAGNESIUM AZ91 IN VERTICAL MILLING MACHINE

Author:

VARATHARAJULU M.1ORCID,JAYAPRAKASH G.2,BASKAR N.2,SARAVANAN A.2

Affiliation:

1. Department of Production Engineering, National Institute of Technology, Tiruchirappalli 600 015, India

2. Department of Mechanical Engineering, Saranathan College of Engineering, Tiruchirapalli 620 012, India

Abstract

The selection of appropriate drilling parameters is essential for improving productivity and part quality, therefore, this work mainly concentrates on the investigation of drilling time, burr height, burr thickness, roundness and surface roughness. The drilling experiments were carried out on Magnesium (Mg) AZ91 with High Speed Steel (HSS) tool using the Vertical Milling Machine (VMM). The parameters reckoned are spindle speed and feed rate. Artificial Neural Network (ANN) was concerned with the building of the model that will be used to forecast the responses following the consideration of Response Surface Methodology (RSM). Conventional method of modeling (RSM) yields poorer results which redirected the study with ANN. The Genetic Algorithm (GA)-based ANN has been reckoned for developing the model. With two nodes in the parameter layer and seven nodes in the response layer, six different networks were constructed using variety of nodes in the hidden layers which are 2–6–7, 2–7–7, 2–8–7, 2–6–6–7, 2–7–6–7 and 2–8–6–7. It is observed that the 2–8–7 network offers the best ANN model in predicting the various responses. The prediction results ensure the reliability of the ANN model to analyze the effect of drilling parameters over the various responses.

Publisher

World Scientific Pub Co Pte Lt

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3