Minimizing Maximum Unmet Demand by Transportations Between Adjacent Nodes Characterized by Supplies and Demands

Author:

Asano Tetsuo1ORCID

Affiliation:

1. Kanazawa University, Kakuma, Kanazawa, Ishikawa, 920-1192, Japan

Abstract

Suppose we are given a graph with nodes characterized by amounts of supplies and demands of multiple commodities. The amounts of commodities stored at nodes (supplies) are given by positive numbers while those of demands at nodes are given by negative numbers. To meet demands we send commodities from nodes to neighbors by using vehicles, one at each node, with some loading capacity moving to and from neighbors. In this paper we adopt a one-way transportation model in which we just send commodities from a node to one of its neighbors along an edge. When we choose one neighbor at each node, we have a set of trips which naturally define a graph such that each connected component has at most one cycle, which is known as a pseudoforest. We present a linear-time algorithm for deciding whether there is a set of trips that meet all demands using one-way multi-commodity transportations on a pseudoforest with node degrees bounded by a constant. Using the algorithm, we first present an efficient algorithm for finding an optimal set of one-way one-commodity trips that minimize the maximum unmet demand on a pseudoforest, and then extend the idea to a multi-commodity problem on a pseudoforest with node degrees bounded by a constant.

Funder

Japan Society for the Promotion of Science London

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3