The Random Bit Complexity of Mobile Robots Scattering

Author:

Bramas Quentin1,Tixeuil Sébastien1

Affiliation:

1. Sorbonne Universités, UPMC Univ Paris 06, CNRS, LIP6 UMR 7606 4 place Jussieu 75005 Paris, France

Abstract

We consider the problem of scattering n robots in a two dimensional continuous space. As this problem is impossible to solve in a deterministic manner, all solutions must be probabilistic. We investigate the amount of randomness (that is, the number of random bits used by the robots) that is required to achieve scattering. We first prove that n log n random bits are necessary to scatter n robots in any setting. Also, we give a sufficient condition for a scattering algorithm to be random bit optimal. As it turns out that previous solutions for scattering satisfy our condition, they are hence proved random bit optimal for the scattering problem. Then, we investigate the time complexity of scattering when strong multiplicity detection is not available. We prove that such algorithms cannot converge in constant time in the general case and in o(log log n) rounds for random bits optimal scattering algorithms. However, we present a family of scattering algorithms that converge as fast as needed without using multiplicity detection. Also, we put forward a specific protocol of this family that is random bit optimal (O(n log n) random bits are used) and time optimal (O(log log n) rounds are used). This improves the time complexity of previous results in the same setting by a log n factor. Aside from characterizing the random bit complexity of mobile robot scattering, our study also closes the time complexity gap with and without strong multiplicity detection (that is, O(1) time complexity is only achievable when strong multiplicity detection is available, and it is possible to approach a constant value as desired otherwise).

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science (miscellaneous)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Scattering with Programmable Matter;Advanced Information Networking and Applications;2023

2. An Asynchronous Maximum Independent Set Algorithm By Myopic Luminous Robots On Grids;The Computer Journal;2022-11-20

3. TuringMobile: a turing machine of oblivious mobile robots with limited visibility and its applications;Distributed Computing;2021-10-23

4. Randomized gathering of asynchronous mobile robots;Theoretical Computer Science;2021-02

5. Fault-Tolerant Mobile Robots;Distributed Computing by Mobile Entities;2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3