On the Strength of Unambiguous Tree Automata

Author:

Michalewski Henryk1,Skrzypczak Michał2

Affiliation:

1. Institute of Mathematics, University of Warsaw, Banacha 2, Warsaw 02-097, Poland

2. Institute of Informatics, University of Warsaw, Banacha 2, Warsaw 02-097, Poland

Abstract

This work is a study of the class of non-deterministic automata on infinite trees that are unambiguous i.e. have at most one accepting run on every tree. The motivating question asks if the fact that an automaton is unambiguous implies some drop in the descriptive complexity of the language recognised by the automaton. As it turns out, such a drop occurs for the parity index and does not occur for the weak parity index.More precisely, given an unambiguous parity automaton [Formula: see text] of index [Formula: see text], we show how to construct an alternating automaton [Formula: see text] which accepts the same language, but is simpler in terms of the acceptance condition. In particular, if [Formula: see text] is a Büchi automaton ([Formula: see text]) then [Formula: see text] is a weak alternating automaton. In general, [Formula: see text] belongs to the class [Formula: see text], what implies that it is simultaneously of alternating index [Formula: see text] and of the dual index [Formula: see text]. The transformation algorithm is based on a separation procedure of Arnold and Santocanale (2005).In the case of non-deterministic automata with the weak parity condition, we provide a separation procedure analogous to the one used above. However, as illustrated by examples, this separation procedure cannot be used to prove a complexity drop in the weak case, as there is no such drop.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3