SINGLE MACHINE SCHEDULING WITH CONTROLLABLE PROCESSING TIMES BY SUBMODULAR OPTIMIZATION

Author:

SHAKHLEVICH NATALIA V.1,SHIOURA AKIYOSHI2,STRUSEVICH VITALY A.3

Affiliation:

1. School of Computing, University of Leeds, Leeds LS2 9JT, U.K.

2. Graduate School of Information Sciences, Tohoku University, Sendai 980-8579, Japan

3. School of Computing and Mathematical Sciences, University of Greenwich, Old Royal Naval College, Park Row, Greenwich, London SE10 9LS, U.K.

Abstract

In scheduling with controllable processing times the actual processing time of each job is to be chosen from the interval between the smallest (compressed or fully crashed) value and the largest (decompressed or uncrashed) value. In the problems under consideration, the jobs are processed on a single machine and the quality of a schedule is measured by two functions: the maximum cost (that depends on job completion times) and the total compression cost. Our main model is bicriteria and is related to determining an optimal trade-off between these two objectives. Additionally, we consider a pair of associated single criterion problems, in which one of the objective functions is bounded while the other one is to be minimized. We reduce the bicriteria problem to a series of parametric linear programs defined over the intersection of a submodular polyhedron with a box. We demonstrate that the feasible region is represented by a so-called base polyhedron and the corresponding problem can be solved by the greedy algorithm that runs two orders of magnitude faster than known previously. For each of the associated single criterion problems, we develop algorithms that deliver the optimum faster than it can be deduced from a solution to the bicriteria problem.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science (miscellaneous)

Reference21 articles.

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3