Sufficient Conditions for Maximally k-Isoperimetric Edge Connectivity of Graphs

Author:

Wang Shiying1,Feng Kai2,Guo Yubao3

Affiliation:

1. College of Mathematics and Information Science, Henan Normal University, Xinxiang, Henan 453007, P. R. China

2. School of Computer and Information Technology, Shanxi University, Taiyuan, Shanxi, 030006, P. R. China

3. Lehrstuhl C für Mathematik, RWTH Aachen University, 52056 Aachen, Germany

Abstract

The k-isoperimetric edge connectivity is a more refined network reliability index than edge connectivity. The k-isoperimetric edge connectivity of a connected graph G is defined as γk(G) = min{|[X, [Formula: see text]]| : X ⊆ V (G), |X| ≥ k, |[Formula: see text]| ≥ k}. Let βk(G) = min{|[X,[Formula: see text]]| : X ⊆ V (G), |X| = k}. A graph G is called a γk-optimal graph if γk(G) = βk(G). An edge cut S = [X,[Formula: see text]] is called a γk-cut if |S| = γk(G), X ⊆ V (G), |X| ≥ k and |[Formula: see text]| ≥ k. Moreover, G is called a super-γk graph if every γk-cut [X,[Formula: see text]] of G has the property that either |X| = k or |[Formula: see text]| = k. Let G be a graph of order at least 2k with k ≥ 2. In this paper, we prove that for any pair u, υ of nonadjacent vertices in G, if |N(u)∩N(υ)| ≥ k+1 when neither u nor υ lies on a triangle, or |N(u)∩N(υ)| ≥ 2k -1 when u or υ lies on a triangle, then G is γk-optimal. Moreover, if G is a triangle-free graph, and |N(u)∩υ(υ)| ≥ k +1 for all pairs u, υ of nonadjacent vertices in G, then G is either super-γk or isomorphic to Kk+1,k+1.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Combination subspace graph learning for cross-modal retrieval;Alexandria Engineering Journal;2020-06

2. Cross-modal dual subspace learning with adversarial network;Neural Networks;2020-06

3. HDMFH: Hypergraph Based Discrete Matrix Factorization Hashing for Multimodal Retrieval;ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP);2020-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3