Hardness Results of Connected Power Domination for Bipartite Graphs and Chordal Graphs

Author:

Goyal Pooja1ORCID,Panda B. S.1ORCID

Affiliation:

1. Department of Mathematics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India

Abstract

A set [Formula: see text] of a graph [Formula: see text] is called a connected power dominating set of [Formula: see text] if [Formula: see text], the subgraph induced by [Formula: see text], is connected and every vertex in the graph can be observed from [Formula: see text], following the two observation rules for power system monitoring: Rule [Formula: see text]: if [Formula: see text], then [Formula: see text] can observe itself and all its neighbors, and Rule [Formula: see text]: for an already observed vertex whose all neighbors except one are observed, then the only unobserved neighbor becomes observed as well. Given a graph [Formula: see text], Minimum Connected Power Domination is to find a connected power dominating set of minimum cardinality of [Formula: see text] and Decide Connected Power Domination is the decision version of Minimum Connected Power Domination. Decide Connected Power Domination is known to be NP -complete for general graphs. In this paper, we prove that Decide Connected Power Domination remains NP -complete for star-convex bipartite graphs, perfect elimination bipartite graphs and split graphs. This answers some open problems posed in [B. Brimkov, D. Mikesell and L. Smith, Connected power domination in graphs, J. Comb. Optim. 38(1) (2019) 292–315]. On the positive side, we show that Minimum Connected Power Domination is polynomial-time solvable for chain graphs, a proper subclass of perfect elimination bipartite graph, and for threshold graphs, a proper subclass of split graphs. Further, we show that Minimum Connected Power Domination cannot be approximated within [Formula: see text] for any [Formula: see text] unless [Formula: see text], for bipartite graphs as well as for chordal graphs. Finally, we show that Minimum Connected Power Domination is APX -hard for bounded degree graphs.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3