Recognizing Generating Subgraphs Revisited

Author:

Levit Vadim E.1ORCID,Tankus David2

Affiliation:

1. Department of Computer Science, Ariel University, Israel

2. Department of Software Engineering, Sami Shamoon College of Engineering, Israel

Abstract

A graph [Formula: see text] is well-covered if all its maximal independent sets are of the same cardinality. Assume that a weight function [Formula: see text] is defined on its vertices. Then [Formula: see text] is [Formula: see text]well-covered if all maximal independent sets are of the same weight. For every graph [Formula: see text], the set of weight functions [Formula: see text] such that [Formula: see text] is [Formula: see text]-well-covered is a vector space, denoted as WCW(G). Deciding whether an input graph [Formula: see text] is well-covered is co-NP-complete. Therefore, finding WCW(G) is co-NP-hard. A generating subgraph of a graph [Formula: see text] is an induced complete bipartite subgraph [Formula: see text] of [Formula: see text] on vertex sets of bipartition [Formula: see text] and [Formula: see text], such that each of [Formula: see text] and [Formula: see text] is a maximal independent set of [Formula: see text], for some independent set [Formula: see text]. If [Formula: see text] is generating, then [Formula: see text] for every weight function [Formula: see text]. Therefore, generating subgraphs play an important role in finding WCW(G). The decision problem whether a subgraph of an input graph is generating is known to be NP-complete. In this article we prove NP- completeness of the problem for graphs without cycles of length 3 and 5, and for bipartite graphs with girth at least 6. On the other hand, we supply polynomial algorithms for recognizing generating subgraphs and finding WCW(G), when the input graph is bipartite without cycles of length 6. We also present a polynomial algorithm which finds WCW(G) when [Formula: see text] does not contain cycles of lengths 3, 4, 5, and 7.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3