Affiliation:
1. Department of Computer Science and Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan
Abstract
The longest increasing subsequence (LIS) problem aims to find the subsequence exhibiting an increasing trend in a numeric sequence with the maximum length. In this paper, we generalize the LIS problem to the longest wave subsequence (LWS) problem, which encompasses two versions: LWSt and LWSr. Given a numeric sequence [Formula: see text] of distinct values and a target trend sequence [Formula: see text], the LWSt problem aims to identify the longest subsequence of [Formula: see text] that preserves the trend of the prefix of [Formula: see text]. And, the LWSr problem aims to find the longest subsequence of [Formula: see text] within [Formula: see text] segments, alternating increasing and decreasing subsequences. We propose two efficient algorithms for solving the two versions of the LWS problem. For the LWSt problem, the time complexity of our algorithm is O[Formula: see text], where [Formula: see text] represents the length of the given numeric sequence [Formula: see text]. Additionally, we propose an O[Formula: see text]-time algorithm for solving the LWSr problem. In both algorithms, we utilize the priority queues for the insertion, deletion, and successor operations.
Funder
National Science and Technology Council
Publisher
World Scientific Pub Co Pte Ltd