Affiliation:
1. The Hakubi Center for Advanced Research, Graduate School of Informatics, Kyoto University, Yoshida Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
Abstract
Karchmer, Kushilevitz and Nisan formulated the formula size problem as an integer programming problem called the rectangle bound and introduced a technique called the LP bound, which gives a formula size lower bound by showing a feasible solution of the dual problem of its LP-relaxation. As extensions of the LP bound, we introduce novel general techniques proving formula size lower bounds, named a quasi-additive bound and the Sherali-Adams bound. While the Sherali-Adams bound is potentially strong enough to give a lower bound matching to the rectangle bound, we prove that the quasi-additive bound can surpass the rectangle bound. We also reveal that the quasi-additive bound is potentially strong enough to prove the matching formula size lower bound.
Publisher
World Scientific Pub Co Pte Lt
Subject
Computer Science (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献