Distributed Independent Sets in Interval and Segment Intersection Graphs

Author:

Bhatt Nirmala1,Gorain Barun2,Mondal Kaushik3,Pandit Supantha4ORCID

Affiliation:

1. Mehta Family School of Data Science and Artificial Intelligence, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India

2. Indian Institute of Technology Bhilai, Raipur, Chattisgarh, India

3. Indian Institute of Technology Ropar, Rupnagar, Punjab, India

4. Dhirubhai Ambani Institute of Information and Communication Technology, Gandhinagar, Gujarat, India

Abstract

The Maximum Independent Set problem is well-studied in graph theory and related areas. An independent set of a graph is a subset of non-adjacent vertices of the graph. A maximum independent set is an independent set of maximum size. This paper studies the Maximum Independent Set problem in some classes of geometric intersection graphs in a distributed setting. More precisely, we study the Maximum Independent Set problem on two geometric intersection graphs, interval and axis-parallel segment intersection graphs, and present deterministic distributed algorithms in a model that is similar but a little weaker than the local communication model. We compute the maximum independent set on interval graphs in [Formula: see text] rounds and [Formula: see text] messages, where [Formula: see text] is the size of the maximum independent set and [Formula: see text] is the number of nodes in the graph. We provide a matching lower bound of [Formula: see text] on the number of rounds, whereas [Formula: see text] is a trivial lower bound on message complexity. Thus, our algorithm is both time and message-optimal. We also study the Maximum Independent Set problem in interval count [Formula: see text] graphs, a special case of the interval graphs where the intervals have exactly [Formula: see text] different lengths. We propose an [Formula: see text]-approximation algorithm that runs in [Formula: see text] round. For axis-parallel segment intersection graphs, we design an [Formula: see text]-approximation algorithm that obtains a solution in [Formula: see text] rounds. The results in this paper extend the results of Molla et al. [J. Parallel Distrib. Comput. 2019].

Funder

DST SERB

Nanotechnology Innovation Centre

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3