AN OBSERVER-BASED DE-QUANTISATION OF DEUTSCH'S ALGORITHM

Author:

CALUDE CRISTIAN S.1,CAVALIERE MATTEO2,MARDARE RADU3

Affiliation:

1. Department of Computer Science, University of Auckland, New Zealand

2. CNB - CSIC, Madrid, Spain

3. Microsoft Research-University of Trento, Italy

Abstract

Deutsch's problem is the simplest and most frequently examined example of computational problem used to demonstrate the superiority of quantum computing over classical computing. Deutsch's quantum algorithm has been claimed to be faster than any classical ones solving the same problem, only to be discovered later that this was not the case. Various de-quantised solutions for Deutsch's quantum algorithm—classical solutions which are as efficient as the quantum one—have been proposed in the literature. These solutions are based on the possibility of classically simulating "superpositions", a key ingredient of quantum algorithms, in particular, Deutsch's algorithm. The de-quantisation proposed in this note is based on a classical simulation of the quantum measurement achieved with a model of observed system. As in some previous de-quantisations of Deutsch's quantum algorithm, the resulting de-quantised algorithm is deterministic. Finally, we classify observers (as finite state automata) that can solve the problem in terms of their "observational power".

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3