On Pseudovarieties of Forest Algebras

Author:

Alirezazadeh Saeid1

Affiliation:

1. Mathematics Department, University of Porto, Rua Campo Alegre, Porto, 4150-179, Portugal

Abstract

Forest algebras are defined for investigating languages of forests [ordered sequences] of unranked trees, where a node may have more than two [ordered] successors. They consist of two monoids, the horizontal and the vertical, with an action of the vertical monoid on the horizontal monoid, and a complementary axiom of faithfulness. In the study of forest algebras one of the main difficulties is how to handle the faithfulness property. A pseudovariety is a class of finite algebras of a given signature, closed under the taking of homomorphic images, subalgebras and finitary direct products. We tried to adapt in this context some of the results in the theory of semigroups, specially the studies on relatively free profinite semigroups, which are an important tool in the theory of pseudovarieties of semigroups. We define a new version of syntactic congruence of a subset of the free forest algebra, not just a forest language. This new version is the natural extension of the syntactic congruence for monoids in the case of forest algebras and is used in the proof of an analog of Hunter’s Lemma. We show that under a certain assumption the two versions of syntactic congruences coincide. We adapt some results of Almeida on metric semigroups to the context of forest algebras. We show that the analog of Hunter’s Lemma holds for metric forest algebras, which leads to the result that zero-dimensional compact metric forest algebras are residually finite. We show an analog of Reiterman’s Theorem, which is based on a study of the structure profinite forest algebras.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Weak Separation Problem for Tree Languages;International Journal of Foundations of Computer Science;2020-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3