A Simple and Efficient Method for Accelerating Construction of the Gap-Greedy Spanner

Author:

Salami Hosein1ORCID,Nouri-Baygi Mostafa1

Affiliation:

1. Department of Computer Engineering, Ferdowsi University of Mashhad, Iran

Abstract

Let [Formula: see text] be the complete Euclidean graph on a set of points embedded in the plane. Given a constant [Formula: see text], a spanning subgraph [Formula: see text] of [Formula: see text] is said to be a [Formula: see text]-spanner, or simply a spanner, if for any pair of nodes [Formula: see text], [Formula: see text] in [Formula: see text] there exists a [Formula: see text]-path in [Formula: see text], i.e., a path between [Formula: see text] and [Formula: see text] whose length is at most [Formula: see text] times their distance in [Formula: see text]. Gap-greedy spanner, proposed by Arya and Smid, is a light weight and bounded degree spanner in which a pair of points [Formula: see text] is guaranteed to have a [Formula: see text]-path, if there exists at least one edge with some special criteria in the spanner. Existing algorithms for computing the gap-greedy spanner determine the existence of such an edge for each pair of points by examining the edges of the spanner, which takes [Formula: see text] time, however in this paper, we have presented a method by which this task can be done in [Formula: see text] time. Using the proposed method and well-separated pair decomposition, we have proposed a linear-space algorithm that can compute the gap-greedy spanner in [Formula: see text] time. How to use the well-separated pair decomposition to compute this spanner was proposed by Bakhshesh and Farshi, however using an example, we have shown that one of the algorithms they have proposed for this purpose is incorrect. We have performed various experiments to measure the duration and amount of memory used by the algorithms for computing this spanner. The results of these experiments showed that the proposed method, without a significant effect on the amount of memory consumed compared to previous algorithms, leads to a significant acceleration in the construction time of this spanner.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3