Approximation Algorithms for Partial Vertex Covers in Trees

Author:

Mkrtchyan Vahan1,Parekh Ojas2,Subramani K.1ORCID

Affiliation:

1. LDCSEE, West Virginia University, Morgantown, WV, USA,

2. Sandia National Laboratories, Albuquerque, NM, USA

Abstract

This paper is concerned with designing algorithms for and analyzing the computational complexity of the partial vertex cover problem in trees. Graphs (and trees) are frequently used to model risk management in various systems. In particular, Caskurlu et al. in [4] have considered a system which essentially represents a tripartite graph. The goal in this model is to reduce the risk in the system below a predefined risk threshold level. It can be shown that the main goal in this risk management system can be formulated as a Partial Vertex Cover problem on bipartite graphs. In this paper, we focus on a special case of the partial vertex cover problem, when the input graph is a tree. We consider four possible versions of this setting, depending on whether or not, the vertices and edges are weighted. Two of these versions, where edges are assumed to be unweighted, are known to be polynomial-time solvable. However, the computational complexity of this problem with weighted edges, and possibly with weighted vertices, remained open. The main contribution of this paper is to resolve these questions by fully characterizing which variants of partial vertex cover remain NP-hard in trees, and which can be solved in polynomial time. In the paper, we propose two pseudo-polynomial DP-based algorithms for the most general case in which weights are present on both the edges and the vertices of the tree. One of these algorithms leads to a polynomial-time procedure, when weights are confined to the edges of the tree. The insights used in this algorithm are combined with additional scaling ideas to derive an FPTAS for the general case. A secondary contribution of this work is to propose a novel way of using centroid decompositions in trees, which could be useful in other settings as well.

Funder

Air Force Office of Scientific Research

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3