Most Complex Non-Returning Regular Languages

Author:

Brzozowski Janusz A.1,Davies Sylvie2

Affiliation:

1. David R. Cheriton School of Computer Science, University of Waterloo, Waterloo, ON, N2L 3G1, Canada

2. Department of Pure Mathematics, University of Waterloo, Waterloo, ON, N2L 3G1, Canada

Abstract

A regular language [Formula: see text] is non-returning if in the minimal deterministic finite automaton accepting it there are no transitions into the initial state. Eom, Han and Jirásková derived upper bounds on the state complexity of boolean operations and Kleene star, and proved that these bounds are tight using two different binary witnesses. They derived tight upper bounds for concatenation and reversal using three different ternary witnesses. These five witnesses use a total of six different transformations. We show that for each [Formula: see text], there exists a ternary witness of state complexity [Formula: see text] that meets the bound for reversal, and restrictions of this witness to binary alphabets meet the bounds for star, product, and boolean operations. Hence all of these operations can be handled simultaneously with a single witness, using only three different transformations. We also derive tight upper bounds on the state complexity of binary operations that take arguments with different alphabets. We prove that the maximal syntactic semigroup of a non-returning language has [Formula: see text] elements and requires at least [Formula: see text] generators. We find the maximal state complexities of atoms of non-returning languages. We show that there exists a most complex sequence of non-returning languages that meet the bounds for all of these complexity measures. Furthermore, we prove there is a most complex sequence that meets all the bounds using alphabets of minimal size.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3