Affiliation:
1. Mathematical Institute, Slovak Academy of Sciences, Grešákova 6, Košice, 040 01, Slovakia
Abstract
We examine the descriptional complexity of the forever operator, which assigns the language [Formula: see text] to a regular language [Formula: see text], and we investigate the trade-offs between various models of finite automata. We consider complete and partial deterministic finite automata, nondeterministic finite automata with single or multiple initial states, alternating, and Boolean finite automata. We assume that the argument and the result of this operation are accepted by automata belonging to one of these six models. We investigate all possible trade-offs and provide a tight upper bound for 32 of 36 of them. The most interesting result is the trade-off from nondeterministic to deterministic automata given by the Dedekind number [Formula: see text]. We also prove that the nondeterministic state complexity of [Formula: see text] is [Formula: see text] which solves an open problem stated by Birget [The state complexity of [Formula: see text] and its connection with temporal logic, Inform. Process. Lett. 58 (1996) 185–188].
Publisher
World Scientific Pub Co Pte Lt
Subject
Computer Science (miscellaneous)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献