Online Minimum Spanning Tree with Advice

Author:

Bianchi Maria Paola1,Böckenhauer Hans-Joachim2,Brülisauer Tatjana3,Komm Dennis2,Palano Beatrice4

Affiliation:

1. Zühlke Engineering AG, Switzerland

2. Department of Computer Science, ETH Zurich, Switzerland

3. Google Inc., Zurich, Switzerland

4. Dipartimento di Informatica “Giovanni Degli Antoni”, Università degli Studi di Milano via Comelico 39, 20135 Milano, Italy

Abstract

In the online minimum spanning tree problem, a graph is revealed vertex by vertex; together with every vertex, all edges to vertices that are already known are given, and an online algorithm must irrevocably choose a subset of them as a part of its solution. The advice complexity of an online problem is a means to quantify the information that needs to be extracted from the input to achieve good results. For a graph of size [Formula: see text], we show an asymptotically tight bound of [Formula: see text] on the number of advice bits to produce an optimal solution for any given graph. For particular graph classes, e.g., with bounded degree or a restricted edge weight function, we prove that the upper bound can be drastically reduced; e.g., [Formula: see text] advice bits allow to compute an optimal result if the weight function equals the Euclidean distance; if the graph is complete and has two different edge weights, even a logarithmic number suffices. Some of these results make use of the optimality of Kruskal’s algorithm for the offline setting. We also study the trade-off between the number of advice bits and the achievable competitive ratio. To this end, we perform a reduction from another online problem to obtain a linear lower bound on the advice complexity for any near-optimal solution. Using our results finally allows us to give a lower bound on the expected competitive ratio of any randomized online algorithm for the problem, even on graphs with three different edge weights.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Advice complexity of adaptive priority algorithms;Theoretical Computer Science;2024-02

2. Online Minimum Spanning Trees with Weight Predictions;Lecture Notes in Computer Science;2023

3. The Secretary Problem with Reservation Costs;Lecture Notes in Computer Science;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3