The Bursty Steiner Tree Problem

Author:

Sharma Gokarna1,Busch Costas2

Affiliation:

1. Department of Computer Science, Kent State University, Kent, OH 44242, USA

2. School of Electrical Engineering and Computer Science, Louisiana State University, Baton Rouge, LA 70803, USA

Abstract

We introduce and study a new Steiner tree problem variation called the bursty Steiner tree problem where new nodes arrive into bursts. This is an online problem which becomes the well-known online Steiner tree problem if the number of nodes in each burst is exactly one and becomes the classic Steiner tree problem if all the nodes appear in a single burst. In undirected graphs, we provide a tight bound of [Formula: see text] on the competitive ratio for this problem, where [Formula: see text] is the total number of nodes to be connected and [Formula: see text] is the total number of different bursts. In directed graphs of bounded edge asymmetry [Formula: see text], we provide a competitive ratio for this problem with a gap of [Formula: see text] factor between the lower bound and the upper bound. We also show that a tight bound of [Formula: see text] on the competitive ratio can be obtained for a bursty variation of the terminal Steiner tree problem. These are the first results that provide clear performance trade-offs for a novel Steiner tree problem variation that subsumes both of its online and classic versions.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3