TOPOLOGICAL CONSTRAINTS FOR SENSE OF DIRECTION

Author:

FLOCCHINI PAOLA1,SANTORO NICOLA2

Affiliation:

1. Département d'Informatique et Recherche Operationnelle, Université de Montréal, Canada

2. School of Computer Science, Carleton University, Canada

Abstract

In a distributed system, each entity has a label (port number) associated to each of its neighbors. It is well known that if the labeling satisfies a global consistency property called Sense of Direction, the communication complexity of many distributed problem can be greatly reduced. This property is assumed to be present and it is implicitly used in most interconnection networks. In this paper we investigate the nature of the relationship between Sense of Direction and network topology. We first consider the class of labelings which only satisfy the requirement of local orientation; that is, at each node, the outgoing edges have distinct labels. We then consider the class of labelings which also satisfy edge symmetry; that is, there exists a correlation between the labels neighbors give to their connecting edge. This class includes most of used labelings. We completely characterize the interplay between topological constraints and consistency constraints for these two classes of labelings. In fact, for each class, we identify both the set of forbidden subgraphs and the set of feasible graphs, and we show that the characterization is complete.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science (miscellaneous)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On Sense of Direction and Mobile Agents;Structural Information and Communication Complexity;2019

2. Weak sense of direction labelings and graph embeddings;Discrete Applied Mathematics;2011-03

3. Computing on anonymous networks with sense of direction;Theoretical Computer Science;2003-05

4. Sense of direction in distributed computing;Theoretical Computer Science;2003-01

5. Backward Consistency and Sense of Direction in Advanced Distributed Systems;SIAM Journal on Computing;2003-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3