Management and Monitoring of Multi-Behavior Recommendation Systems Using Graph Convolutional Neural Networks

Author:

Liu Changwei1,Wang Kexin2,Wu Aman2

Affiliation:

1. Department of Information Engineering, Guangzhou Nanyang Polytechnic College, Guangzhou, P. R. China

2. School of Computer Science and Technology, Heilongjiang University, Harbin, P. R. China

Abstract

Different recommendation algorithms, which often use only a single type of user-item engagement, are plagued by imbalanced datasets and cold start problems. Multi-behavior recommendations, which takes advantage of a variety of customer interaction including click and favorites, can be a good option. Early attempts at multi-behavior suggestion tried to consider the varying levels of effect each behavior has on the target behavior. They also disregard the meanings of behaviors, which are implicit in multi-behavior information. Because of these two flaws, the information isn’t being completely utilized to improve suggestion performance on the specific behavior. In this paper, we take a novel response to the situation by creating a unified network to capture multi-behavior information and displaying the MBGCNNN model (Multi-Behavior Graph Convolutional Neural Network). MBGCNN may effectively overcome the constraints of prior studies by learning behavior intensity via the user-item dissemination level and collecting behavior interpretation via the items dissemination level. Practical derives from various data sets back up our model’s order to leverage multi-behavior data. On real methods, our approach beats the average background by 25.02 percent and 6.51 percent, respectively. Additional research on cold-start consumers supports the viability of our suggested approach.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computer Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3