Affiliation:
1. Department of Information Engineering, Guangzhou Nanyang Polytechnic College, Guangzhou, P. R. China
2. School of Computer Science and Technology, Heilongjiang University, Harbin, P. R. China
Abstract
Different recommendation algorithms, which often use only a single type of user-item engagement, are plagued by imbalanced datasets and cold start problems. Multi-behavior recommendations, which takes advantage of a variety of customer interaction including click and favorites, can be a good option. Early attempts at multi-behavior suggestion tried to consider the varying levels of effect each behavior has on the target behavior. They also disregard the meanings of behaviors, which are implicit in multi-behavior information. Because of these two flaws, the information isn’t being completely utilized to improve suggestion performance on the specific behavior. In this paper, we take a novel response to the situation by creating a unified network to capture multi-behavior information and displaying the MBGCNNN model (Multi-Behavior Graph Convolutional Neural Network). MBGCNN may effectively overcome the constraints of prior studies by learning behavior intensity via the user-item dissemination level and collecting behavior interpretation via the items dissemination level. Practical derives from various data sets back up our model’s order to leverage multi-behavior data. On real methods, our approach beats the average background by 25.02 percent and 6.51 percent, respectively. Additional research on cold-start consumers supports the viability of our suggested approach.
Publisher
World Scientific Pub Co Pte Ltd
Subject
Computer Science (miscellaneous)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献