Characterization of Infinite LSP Words and Endomorphisms Preserving the LSP Property

Author:

Richomme Gwenaël1

Affiliation:

1. LIRMM, Université Paul-Valéry Montpellier 3, Université de Montpellier, CNRS, Montpellier, France

Abstract

Answering a question of G. Fici, we give an [Formula: see text]-adic characterization of the family of infinite LSP words, that is, the family of infinite words having all their left special factors as prefixes. More precisely we provide a finite set of morphisms [Formula: see text] and an automaton [Formula: see text] such that an infinite word is LSP if and only if it is [Formula: see text]-adic and one of its directive words is recognizable by [Formula: see text]. Then we characterize the endomorphisms that preserve the property of being LSP for infinite words. This allows us to prove that there exists no set [Formula: see text] of endomorphisms for which the set of infinite LSP words corresponds to the set of [Formula: see text]-adic words. This implies that an automaton is required no matter which set of morphisms is used.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science (miscellaneous)

Reference17 articles.

1. Représentation géométrique de suites de complexité $2n+1$

2. RIMS Kôkyûroku Bessatsu;Berthé V.,2016

3. RIMS Kôkyûroku Bessatsu;Berthé V.,2014

4. Initial powers of Sturmian sequences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On sets of indefinitely desubstitutable words;Theoretical Computer Science;2021-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3