FINDING SMALL EQUIVALENT DECISION TREES IS HARD

Author:

ZANTEMA HANS1,BODLAENDER HANS L.1

Affiliation:

1. Department of Computer Science, Utrecht University Padualaan 14, P.O. box 80.089, 3508 TB Utrecht, The Netherlands

Abstract

Two decision trees are called decision equivalent if they represent the same function, i.e., they yield the same result for every possible input. We prove that given a decision tree and a number, to decide if there is a decision equivalent decision tree of size at most that number is NP-complete. As a consequence, finding a decision tree of minimal size that is decision equivalent to a given decision tree is an NP-hard problem. This result differs from the well-known result of NP-hardness of finding a decision tree of minimal size that is consistent with a given training set. Instead our result is a basic result for decision trees, apart from the setting of inductive inference. On the other hand, this result differs from similar results for BDDs and OBDDs: since in decision trees no sharing is allowed, the notion of decision tree size is essentially different from BDD size.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science (miscellaneous)

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Properly learning decision trees with queries is NP-hard;2023 IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS);2023-11-06

2. LDM-EDBME: Leveraging Data Mining for Enhancing Development of Basic Mathematics Education at Middle School in Chinese Rural Region;Atlantis Highlights in Social Sciences, Education and Humanities;2023

3. Properly Learning Decision Trees in almost Polynomial Time;Journal of the ACM;2022-11-24

4. Machine Learning Algorithms;Artificial Intelligence and Quantum Computing for Advanced Wireless Networks;2022-02-14

5. Properly learning decision trees in almost polynomial time;2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS);2022-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3