The Wide Diameter and Fault Diameter of Exchanged Crossed Cube

Author:

Niu Baohua1,Zhou Shuming2ORCID,Tian Tao1,Zhang Qifan1

Affiliation:

1. College of Mathematics and Statistics, Fujian Normal University, Fuzhou, Fujian 350117, P. R. China

2. Key Laboratory of Analytical Mathematics and Applications, Ministry of Education, Fujian Normal University, Fujian 350117, P. R. China

Abstract

The fault diameter and wide diameter are commonly used to measure the fault tolerance and transmission delay of interconnection networks beyond traditional diameter. The [Formula: see text]-wide diameter of graph [Formula: see text], denoted by [Formula: see text], is the minimum integer [Formula: see text] such that there exist at least [Formula: see text] internally vertex disjoint paths of length at most [Formula: see text] for any two distinct vertices in [Formula: see text]. The [Formula: see text]-fault diameter of graph [Formula: see text], denoted by [Formula: see text], is the maximum diameter of the survival graph obtained by deleting at most [Formula: see text] vertices in [Formula: see text]. The exchanged crossed cube, as a compounded interconnection network denoted by [Formula: see text], holds the desirable properties of both crossed cube and exchanged hypercube, while achieving a better balanced between cost and performance of the parallel computing systems. In this paper, we construct [Formula: see text] internally vertex disjoint paths between any two distinct vertices of [Formula: see text]. Moreover, we determine the upper and lower bounds of [Formula: see text]-wide diameter and [Formula: see text]-fault diameter of [Formula: see text], i.e., [Formula: see text], which shows that the exchanged crossed cube has better efficiency and reliability than that of the exchanged hypercube.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Fujian Province

China Scholarship Council

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3