Semisimple Synchronizing Automata and the Wedderburn-Artin Theory

Author:

Almeida Jorge12,Rodaro Emanuele12

Affiliation:

1. Centro de Matemática, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal

2. Rua do Campo Alegre, 687 Porto, 4169-007, Portugal

Abstract

We present a ring theoretic approach to Černý's conjecture via the Wedderburn-Artin theory. We first introduce the radical ideal of a synchronizing automaton, and then the natural notion of semisimple synchronizing automata. This is a rather broad class since it contains simple synchronizing automata like those in Černý's series. Semisimplicity gives also the advantage of “factorizing” the problem of finding a synchronizing word into the sub-problems of finding “short” words that are zeros into the projection of the simple components in the Wedderburn-Artin decomposition. In the general case this last problem is related to the search of radical words of length at most [Formula: see text] where n is the number of states of the automaton. We show that the solution of this “Radical Conjecture” would give an upper bound [Formula: see text] for the shortest reset word in a strongly connected synchronizing automaton. Finally, we use this approach to prove the Radical Conjecture in some particular cases and Černý's conjecture for the class of strongly semisimple synchronizing automata. These are automata whose sets of synchronizing words are cyclic ideals, or equivalently, ideal regular languages that are closed under taking roots.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science (miscellaneous)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Synchronization of Primitive Automata;RAIRO - Theoretical Informatics and Applications;2024

2. Синхронизация конечных автоматов;Uspekhi Matematicheskikh Nauk;2022

3. Synchronization of finite automata;Russian Mathematical Surveys;2022

4. A bound for the length of the shortest reset words for semisimple synchronizing automata via the packing number;Journal of Algebraic Combinatorics;2018-10-24

5. Strongly connected synchronizing automata and the language of minimal reset words;Advances in Applied Mathematics;2018-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3