Explicit Communication Among Stigmergic Robots

Author:

Dieudonné Yoann1,Dolev Shlomi2,Petit Franck3,Segal Michael4

Affiliation:

1. MIS, Université of Picardie Jules Verne, France

2. Department of Computer Science, Ben-Gurion University of the Negev, Israel

3. LiP6/CNRS/INRIA, Sorbonne Université, France

4. Communication Systems Engineering Department, Ben-Gurion University of the Negev, Israel

Abstract

In this paper, we investigate avenues for the exchange of information (explicit communication) among deaf and mute mobile robots scattered in the plane. We introduce the use of movement-signals (analogously to flight signals and bees waggle) as a mean to transfer messages, enabling the use of distributed algorithms among robots. We propose one-to-one deterministic movement protocols that implement explicit communication among semi-synchronous robots. We first show how the movements of robots can provide implicit acknowledgment in semi-synchronous systems. We use this result to design one-to-one communication among a pair of robots. Then, we propose two one-to-one communication protocols for any system of [Formula: see text] robots. The former works for robots equipped with observable IDs that agree on a common direction (sense of direction). The latter enables one-to-one communication assuming robots devoid of any observable IDs or sense of direction. All protocols (for either two or any number of robots) assume that no robot remains inactive forever. However, they cannot avoid that the robots move either away or closer to each others, by the way requiring robots with an infinite visibility. In this paper, we also present how to overcome these two disadvantages (some activity of every robot and infinite visibility). Our protocols enable the use of distributing algorithms based on message exchanges among swarms of stigmergic robots. They also allow robots to be equipped with the means of communication to tolerate faults in their communication devices.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Forgive & Forget: Self-Stabilizing Swarms in Spite of Byzantine Robots;2019 Seventh International Symposium on Computing and Networking Workshops (CANDARW);2019-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3