Affiliation:
1. Physics Department, University of Wuppertal, D-42097 Wuppertal, Germany
Abstract
Using Monte Carlo techniques, we study the decay of magnetization in diluted two-dimensional Ising models at and below the critical temperature Tc of the undiluted Ising model, but above the critical temperature of the diluted system. Using damage spreading (or rather damage "healing"), we are able to measure down to much lower final magnetizations (10–9) and to much larger times than previous authors. Nevertheless, we do not yet find the predicted asymptotic behavior in the Griffiths phase T < Tc. But we can at least exclude a stretched exponential decay as found in previous papers, for T < Tc. Finally, we discuss the case T = Tc where a stretched exponential decay can be proven to hold, at least for p < pc. We indeed do see a stretched exponential for p = pc (and T = Tc), but we show that it cannot describe the asymptotic behavior either.
Publisher
World Scientific Pub Co Pte Lt
Subject
Computational Theory and Mathematics,Computer Science Applications,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献