Transient nanofluid squeezing cooling process using aluminum oxide nanoparticle

Author:

Tlili Iskander12,Moradi R.3,Barzegar Gerdroodbary M.4

Affiliation:

1. Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam

2. Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam

3. Department of Chemical Engineering, School of Engineering and Applied Science, Khazar University, Baku, Azerbaijan

4. Department of Mechanical Engineering, Babol Noshirvani University of Technology, Babol, Iran

Abstract

Computational studies have been widely applied for the thermal evaluation of the nanomaterial thermal feature in different industrial and scientific issues. The squeezed flow and heat transfer features for Al2O3-water nanofluid among analogous plates are investigated using the GOHAM and its validity is verified by comparison with existing numerical results. Novel aspects of Brownian motion and thermal force were accounted in the simulation of nanomaterial flow within parallel plate. Analytical investigation has been done for diverse governing factors namely: the squeeze, chemical reaction factors and Eckert number. The obtained outcomes show that [Formula: see text] has direct relationship with absolute values of squeeze factor. Nu increases for large Eckert number and absolute values of squeeze number.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computational Theory and Mathematics,Computer Science Applications,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3