Modeling and protecting global ecological networks

Author:

Sun Xinmiao1,Li Ruiqi2

Affiliation:

1. School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China

2. UrbanNet Lab, College of Information Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P. R. China

Abstract

With the rapid urbanization worldwide and ever-increasing impacts of human activities since at least 200 years ago, we are now facing a harsh situation of our biosphere. Building a global-level network model on ecological systems is of great importance, which would be able to provide us predictive and quantitative responses to human activities, leading to viable suggestions to policymakers. In this paper, we propose a multi-layer model for the global ecological network, where a number of local networks are connected via long-range interactions associated with migrant species, which can be induced by human activities or natural migration of wildlife, and each local network is generated by a trophic-level-based stochastic model. Predator–prey dynamics is described by a networked Lotka–Volterra model that accounts for the self-suppression effects on basal species, and the negative feedback loops. Impacts of human activities are modeled by investigating the quantitative changes of biodiversity under certain protecting strategies. We reveal that the global ecological network is organized in a clustered small-world manner, with in-degree distribution more heterogeneous than out-degree distribution. Protecting endangered species, popular preys and predicted-to-be-extinct species is more effective than randomly selected species or influential predators. Protecting after entering the fast extinction stage is more effective than at the beginning for some high trophic level species.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computational Theory and Mathematics,Computer Science Applications,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3