NEW METHOD OF EVALUATING RELATIVE THERMAL STABILITIES OF PROTEINS BASED ON THEIR AMINO ACID SEQUENCES: TARGETSTAR

Author:

KIM HAEJIN12,MOON EUN-JOUNG1,MOON SUNGCHUL1,JUNG HO-JIN1,YANG YOUNG-LYEOL3,PARK YOUNG-HOON3,HEO MUYOUNG4,CHEON MOOKYUNG4,CHANG IKSOO4,HAN DONG-SOO2

Affiliation:

1. Ensoltek Co., Ltd. T122, ICU, Daejeon 305-732, Korea

2. School of Engineering, Information and Communications University, Daejeon 305-714, Korea

3. R&D Center for Bioproducts, CJ Corp., Seoul 157-724, Korea

4. National Research Laboratory for Computational Proteomics and Biophysics, Department of Physics, Pusan National University, Busan 609-735, Korea

Abstract

Several computational methods have been developed to solve the problem of protein thermostabilization. One common drawback of them is that they must have the information of a backbone structure of a protein for the generation of a proper amino acid sequence. In this paper, we propose a new method called TargetStar by incorporating computational biology and statistical physics, in which an approximate partition function and a specific heat are used to calculate the folding transition temperature of a protein and then to predict the relative thermal stabilities for given proteins based only on their amino acid sequences. To evaluate the prediction accuracy of TargetStar, we calculated folding transition temperatures of 289 orthologous protein pairs using the proposed method, where each protein pair contains one hyperthermophilic protein and one mesophilic protein. According to our evaluation, hyperthermophilic and mesophilic proteins are distinguished from each other in terms of relative thermal stabilities with 77% prediction accuracy. Thus, TargetStar may serve as an efficient method to design an amino acid sequence of a target protein with the desired thermal stability prior to the expensive and time-consuming mutagenesis experiment.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computational Theory and Mathematics,Computer Science Applications,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3