Advancing high-speed flow simulations: SAUSM – an innovative hybrid numerical scheme for shock stability and accuracy

Author:

Mohammadi Adnan1,Djavareshkian Mohammad Hassan1

Affiliation:

1. Department of Mechanical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, P.O. Box 91775-1111, Iran

Abstract

This paper introduces a novel hybrid numerical method, SAUSM, designed for accurate and robust simulation of compressible flows governed by the Euler equations. While the AUSM[Formula: see text] scheme provides proper resolution of smooth flow features, it is susceptible to anomalies, particularly the carbuncle phenomenon near strong shock discontinuities. Conversely, the AUFS scheme offers inherent stability in capturing shocks; however, it lacks the accuracy of AUSM[Formula: see text] in smooth regions. The proposed SAUSM method combines AUSM[Formula: see text] and AUFS through an adaptive weighting function, facilitating a seamless transition between the schemes. This approach preserves the accuracy of AUSM[Formula: see text] in smooth regions while ensuring robust shock-capturing capabilities near discontinuities. The effectiveness of the SAUSM method is rigorously demonstrated through a comprehensive suite of progressively complex test cases. Numerical experiments demonstrate SAUSM’s proficiency in resolving intense shock patterns and discontinuities without introducing anomalies. In the selected test cases, SAUSM agrees with reference solutions and effectively mitigates anomalies observed in AUSM[Formula: see text], including kinked Mach stems. In the challenging test case involving hypersonic blunt body flow over a cylinder, SAUSM adapts dissipation effectively by utilizing its adaptive weighting function to generate smooth pressure distributions, thereby eliminating the carbuncle instability linked to AUSM[Formula: see text] when applied to a high aspect ratio grid. The consistent formulation of flux splitting and the adaptive weighting in SAUSM prevent excessive dissipation away from discontinuities, thus preserving accuracy comparable to that of exact Riemann solvers. Consequently, SAUSM emerges as a promising and innovative approach to accurately and robustly simulate a wide range of compressible Euler flows. The comprehensive results obtained from the validation tests firmly establish SAUSM as a highly effective general-purpose technique for computational fluid dynamics in academic research.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computational Theory and Mathematics,Computer Science Applications,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3