Micro-foundation using percolation theory of the finite time singular behavior of the crash hazard rate in a class of rational expectation bubbles

Author:

Seyrich Maximilian12,Sornette Didier34

Affiliation:

1. Department of Physics, ETH Zurich, Otto-Stern-Weg 1, 8093 Zurich, Switzerland

2. Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstrasse 36, 10623 Berlin, Germany

3. Chair of Entrepreneurial Risk, ETH Zurich, Scheuchzerstrasse 7, 8092 Zuerich, Switzerland

4. Swiss Finance Institute, c/o University of Geneva, 40 blvd. Du Pont d’Arve, CH 1211 Geneva 4, Switzerland

Abstract

We present a plausible micro-founded model for the previously postulated power law finite time singular form of the crash hazard rate in the Johansen–Ledoit–Sornette (JLS) model of rational expectation bubbles. The model is based on a percolation picture of the network of traders and the concept that clusters of connected traders share the same opinion. The key ingredient is the notion that a shift of position from buyer to seller of a sufficiently large group of traders can trigger a crash. This provides a formula to estimate the crash hazard rate by summation over percolation clusters above a minimum size of a power [Formula: see text] (with [Formula: see text]) of the cluster sizes [Formula: see text], similarly to a generalized percolation susceptibility. The power [Formula: see text] of cluster sizes emerges from the super-linear dependence of group activity as a function of group size, previously documented in the literature. The crash hazard rate exhibits explosive finite time singular behaviors when the control parameter (fraction of occupied sites, or density of traders in the network) approaches the percolation threshold [Formula: see text]. Realistic dynamics are generated by modeling the density of traders on the percolation network by an Ornstein–Uhlenbeck process, whose memory controls the spontaneous excursion of the control parameter close to the critical region of bubble formation. Our numerical simulations recover the main stylized properties of the JLS model with intermittent explosive super-exponential bubbles interrupted by crashes.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computational Theory and Mathematics,Computer Science Applications,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Detection of financial bubbles using a log‐periodic power law singularity (LPPLS) model;WIREs Computational Statistics;2024-03

2. Why topological data analysis detects financial bubbles?;Communications in Nonlinear Science and Numerical Simulation;2024-01

3. Detection of financial bubbles using a log-periodic power law singularity (LPPLS) model;SSRN Electronic Journal;2024

4. Bubbles for Fama from Sornette;SSRN Electronic Journal;2021

5. INEFFICIENT BUBBLES AND EFFICIENT DRAWDOWNS IN FINANCIAL MARKETS;International Journal of Theoretical and Applied Finance;2020-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3