Affiliation:
1. Department of Mathematics, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
Abstract
This research is focused on the examination of an unsteady flow of an electromagnetic nanofluid close to a stagnation point over an expanded sheet kept horizontally. Buongiorno’s nanofluid model is revised with the combined influence of the externally applied electric and magnetic fluxes. Moreover, the underneath surface offers multiple slips into the nanofluid flow. The leading partial differential equations (PDE) are renovated to the nonlinear ordinary differential equations (ODE) with the assistance of similarity transformations. Thus, the outcomes are received numerically by using the RK-6 with Nachtsheim–Swigert shooting technique. The enlistment of the outcomes for the momentum, energy and concentration profiles along with the skin-friction coefficient [Formula: see text], Nusselt number [Formula: see text] and Sherwood number [Formula: see text] for several parametric values are presented in a graphical and tabular form and discussed in detail. The variation of streamlines with respect to the unsteadiness parameter is also recorded. Statistical inspection reveals that the flow parameters are highly correlated with the wall shear stress, wall heat and mass fluxes. Findings indicate that the escalation of electric flux tries to intensify the hydrodynamic boundary layer meanwhile the magnetic flux assists to stabilize the growth by reducing it for both the steady and unsteady flow patterns. Influence of velocity slip parameter [Formula: see text] from 0.0 to 1.5 causes the reduction in [Formula: see text] by 16.98% for steady flow while 60.27% for time-dependent flow case. Moreover, we expect that these theoretical findings are very much helpful for several engineering and industrial applications such as polymer sheet productions, manufacturing automobile machines, cooling microelectronic chips, etc.
Publisher
World Scientific Pub Co Pte Ltd
Subject
Computational Theory and Mathematics,Computer Science Applications,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献