New Green’s functions for some nonlinear oscillating systems and related PDEs

Author:

Khurshudyan Asatur Zh.1

Affiliation:

1. Department of Dynamics of Deformable Systems and Coupled Fields, Institute of Mechanics, NAS of Armenia, 24B Baghramyan Ave, Yerevan 0019; Republic of Armenia

Abstract

During the past three decades, the advantageous concept of the Green’s function has been extended from linear systems to nonlinear ones. At that, there exists a rigorous and an approximate extension. The rigorous extension introduces the so-called backward and forward propagators, which play the same role for nonlinear systems as the Green’s function plays for linear systems. The approximate extension involves the Green’s formula for linear systems with a Green’s function satisfying the corresponding nonlinear equation. For the numerical evaluation of nonlinear ordinary differential equations, the second approach seems to be more convenient. In this article we study a hierarchy of nonlinear partial differential equations that can be approximated by the second approach. Green’s functions for particular nonlinearities are derived explicitly. Numerical error analysis in the case of exponential nonlinearity for different source functions supports the advantage of the approach.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computational Theory and Mathematics,Computer Science Applications,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An identity for the Heaviside function and its application in representation of nonlinear Green’s function;Computational and Applied Mathematics;2019-11-19

2. A general representation for the Green's function of second‐order nonlinear differential equations;Computational and Mathematical Methods;2019-05-16

3. Green’s functions for higher order nonlinear equations;International Journal of Modern Physics C;2018-10

4. Green’s function solution of nonlinear wave equation depending on the absolute value of the unknown function;International Journal of Geometric Methods in Modern Physics;2018-10

5. Exact and approximate controllability of nonlinear dynamic systems in infinite time: The Green's function approach;ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik;2018-09-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3