A linear mass and energy conserving numerical scheme for two-phase flows with thermocapillary effects

Author:

Shao Lihua1,Guo Zhenlin2,Sun Yanxiao2

Affiliation:

1. Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, P. R. China

2. Mechanics Division, Beijing Computational Science Research Center, Building 9, East Zone ZPark II, No. 10, East Xibeiwang Road, Haidian District, Beijing 100193, P. R. China

Abstract

In this paper, a thermodynamically consistent phase-field model is employed to simulate the thermocapillary migration of a droplet. The model equations consist of a general Navier–Stokes equation for the two-phase flows, a Cahn–Hilliard equation for the diffuse interface, and a heat equation, and meanwhile satisfy the balance laws of mass, energy and entropy. In particular, the total energy of the system includes kinetic energy, potential energy and internal energy, which leads to a highly coupled and nonlinear equation system. We therefore develop a linear mass and energy conserving, semi-decoupled numerical method for the numerical simulations. As the model contains a heat (energy) equation, a simple error term introduced by the temporal discretization of the momentum equation can be absorbed into the heat equation, such that the numerical solutions satisfy the conservation laws of mass and energy exactly at the temporal discrete level. Several numerical tests are carried out to validate our numerical method.

Funder

the National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computational Theory and Mathematics,Computer Science Applications,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3