Optimal conditions for the numerical calculation of the largest Lyapunov exponent for systems of ordinary differential equations

Author:

Dubeibe F. L.1,Bermúdez-Almanza L. D.1

Affiliation:

1. Facultad de Ciencias Humanas y de la Educación, Escuela de Pedagogía y Bellas Artes, Universidad de los Llanos, Villavicencio, Colombia

Abstract

A general indicator of the presence of chaos in a dynamical system is the largest Lyapunov exponent (LLE). This quantity provides a measure of the mean exponential rate of divergence of nearby orbits. In this paper, we show that the so-called two-particle method introduced by Benettin et al. could lead to spurious estimations of the LLE. As a comparator method, the maximum Lyapunov exponent is computed from the solution of the variational equations of the system. We show that the incorrect estimation of the LLE is based on the setting of the renormalization time and the initial distance between trajectories. Unlike previously published works, we here present three criteria that could help to determine correctly these parameters so that the LLE is close to the expected value. The results have been tested with four well known dynamical systems: Ueda, Duffing, Rössler and Lorenz.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computational Theory and Mathematics,Computer Science Applications,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3