A new perspective of link prediction in complex network for improving reliability

Author:

Gu Shuang1,Li Keping1,Yang Liu1

Affiliation:

1. State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing 100044, P. R. China

Abstract

Link prediction is an important issue for network evolution. For many real networks, future link prediction is the key to network development. Experience shows that improving reliability is an important trend of network evolution. Therefore, we consider it from a new perspective and propose a method for predicting new links of evolution networks. The proposed network reliability growth (NRG) model comprehensively considers the factors related to network structure, including the degree, neighbor nodes and distance. Our aim is to improve the reliability in link prediction. In experiments, we apply China high-speed railway network, China highway network and scale-free networks as examples. The results show that the proposed method has better prediction performance for different evaluation indexes. Compared with the other methods, such as CN, RA, PA, ACT, CT and NN, the proposed method has large growth rate and makes the reliability reach the maximum at first which save network construction resources, cost and improve efficiency. The proposed method tends to develop the network towards homogeneous network. In real networks, this structure with stronger stability is the goal of network construction. Therefore, our method is the best to improve network reliability quickly and effectively.

Funder

Fundamental Research Funds for the Central Universities

Publisher

World Scientific Pub Co Pte Lt

Subject

Computational Theory and Mathematics,Computer Science Applications,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Link Prediction in Social Networks using Vertex Entropy;International Journal of Recent Technology and Engineering (IJRTE);2023-07-30

2. A transportation network evolution model based on link prediction;International Journal of Modern Physics B;2021-11-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3